Magnetic Rezonance Imaging Findings in Dyslexia
PDF
Cite
Share
Request
Review
P: 16-22
March 2024

Magnetic Rezonance Imaging Findings in Dyslexia

Turk J Child Adolesc Ment Health 2024;31(1):16-22
1. Sağlık Bilimleri Üniversitesi, İzmir Tepecik Eğitim ve Araştırma Hastanesi, Çocuk ve Ergen Psikiyatrisi Kliniği, İzmir, Türkiye
2. Dokuz Eylül Üniversitesi Tıp Fakültesi, Radyoloji Anabilim Dalı, İzmir, Türkiye
No information available.
No information available
Received Date: 20.05.2021
Accepted Date: 15.06.2021
Publish Date: 27.03.2024
PDF
Cite
Share
Request

ABSTRACT

In order to read, various brain regions must interact with each other accurately and quickly. Imaging studies play an important role in elucidating the neurobiology of dyslexia, which is defined as not being able to read accurately and fluently. Structural and functional magnetic resonance (MR) imaging are used in elucidation of basic neurobiological mechanisms. In structural imaging Voxel Based Morphometry, diffusion tensor imaging, MR spectroscopy; in functional imaging, functional magnetic resonance imaging investigations are carried out. During the paradigms used in functional MR imaging studies, although cerebral hypoactivation is seen in general, circuits including the temporobasal, parietal and frontal lobes are often disrupted in the left and right hemispheres without lateralization. The findings of structural imaging studies show that the neural mechanisms of dyslexia are highly complex and the reading function is largely related to the maturation of the brain. In this review, it is aimed to shed light on the treatment of these cases and future studies of MR studies and their results in patients with dyslexia.

Keywords: Dyslexia, functional MR imaging, structural MR imaging, DTI, MRS

References

1
Mascheretti S, De Luca A, Trezzi V, Peruzzo D, Nordio A, Marino C, Arrigoni F. Neurogenetics of developmental dyslexia: from genes to behavior through brain neuroimaging and cognitive and sensorial mechanisms. Transl Psychiatry. 2017;3;7:e987.
2
Norton ES, Wolf M. Rapid automatized naming (RAN) and reading fluency: implications for understanding and treatment of reading disabilities. Annu Rev Psychol. 2012;63:427-452.
3
American Psychiatry Association (APA). Diagnostic and statistical manual of mental disorders (5th ed.) Washington, DC, 2013.
4
Günay Kılıç B. Özgül Öğrenme Bozukluğu. In: Akay AP, Ercan ES, eds. Çocuk ve Ergen Ruh Sağlığı ve Hastalıkları (9th ed). Ankara;Türkiye Çocuk ve Genç Pskiyatrisi Derneği Yayınları.2016:87-95.
5
Mechelli CJ, Price K, Friston J, and Ashburner J. Voxel-based morphometry of the human brain: methods and applications. Curr Med Imaging Rev. 2005;1:105-113.
6
Soylu F. Matematik Öğrenme Güçlüğünün (Diskalkulinin) Beyinsel Ve Kalitimsal Temelleri. Diskalkuli: Matematik Öğrenme Güçlüğü Tanımı, Özellikleri, Yaygınlığı, Nedenleri ve Tanılanması (1th ed). Ankara; Pegem Akademi. 2020:39-42.
7
Xia Z, Hoeft F, Zhang L, Shu H. Neuroanatomical anomalies of dyslexia: disambiguating the effects of disorder, performance, and maturation. Neuropsychologia. 2016;81:68-78.
8
Vinckenbosch E, Robichon F, Eliez S. Gray matter alteration in dyslexia: converging evidence from volumetric and voxel-by-voxel MRI analyses. Neuropsychologia. 2005;43:324-331.
9
Dole M, Meunier F, Hoen M. Gray and white matter distribution in dyslexia: a VBM study of superior temporal gyrus asymmetry. PLoS One. 2013;8:e76823.
10
Pernet CR, Poline JB, Demonet JF, Rousselet GA. Brain classification reveals the right cerebellum as the best biomarker of dyslexia. BMC Neurosci. 2009;10:67.
11
Silani G, Frith U, Demonet J-F, Fazio F, Perani D, Price C, Frith CD, Paulesu E. Brain abnormalities underlying altered activation in dyslexia: a voxel based morphometry study Brain. 2005;128:2453-2461.
12
Hoeft F, Ueno T, Reiss AL, Meyler A, Whitfield-Gabrieli S, Glover GH, Keller TA, Kobayashi N, Mazaika P, Jo B, Just MA, Gabrieli JDE. Prediction of children’s reading skills using behavioral, functional, and structural neuroimaging measures. Behav Neurosci. 2007;121:602-613.
13
Krafnick AJ, Flowers DL, Luetje MM, Napoliello EM, Eden GF. An investigation into the origin of anatomical differences in dyslexia. J Neurosci. 2014;34:901-908.
14
Tamboer P, Scholte HS, Vorst HCM. Dyslexia and voxel-based morphometry: correlations between five behavioural measures of dyslexia and gray and white matter volumes Ann Dyslexia. 2015;65:121-141.
15
Brown WE, Eliez S, Menon V, Rumsey JM, White CD, Reiss AL. Preliminary evidence of widespread morphological variations of the brain in dyslexia. Neurology. 2001;56:781-783.
16
Brambati SM, Termine C, Ruffino M, Stella G, Fazio F, Cappa SF, Perani D. Regional reductions of gray matter volume in familial dyslexia. Neurology. 2004;63:742-745.
17
Eckert MA, Leonard CM, Wilke M, Eckert M, Richards T, Richards A, Berninger V. Anatomical signatures of dyslexia in children: unique information from manual and voxel based morphometry brain measures. Cortex. 2005;41:304-315.
18
Kronbichler M, Wimmer H, Staffen W, Hutzler F, Mair A, Ladurner G. Developmental dyslexia: gray matter abnormalities in the occipitotemporal cortex. Hum Brain Mapp. 2008;29:613-625.
19
Steinbrink C, Vogt K, Kastrup A, Müller H-P, Juengling FD, Kassubek J, Riecker A. The contribution of white and gray matter differences to developmental dyslexia: insights from DTI and VBM at 3.0 T. Neuropsychologia. 2008;46:3170-3178.
20
Liu L, You W, Wang W, Guo X, Peng D, Booth J. Altered brain structure in Chinese dyslexic children. Neuropsychologia. 2013;51:1169-1176.
21
Stoodley CJ. Distinct regions of the cerebellum show gray matter decreases in autism, ADHD, and developmental dyslexia. Front Syst Neurosci. 2014;8:92.
22
Assaf Y, Pasternak O. Diffusion tensor imaging (dti)-based white matter mapping in brain research: a review. J Mol Neurosci. 2008;34:51-61.
23
Soares JM, Marques P, Alves V, Sousa N. A hitchhiker’s guide to diffusion tensor imaging. Front Neurosci. 2013;7:1-14.
24
Emsell L, Van Hecke W, Tournier JD. Introduction to Diffusion Tensor Imaging. Diffusion Tensor Imaging: A practical handbook. Springer. 2015:7-22.
25
Uluğ AM, van Zijl PCM. Orientation-independent diffusion imaging without tensor diagonalization: Anisotropy definitions based on physical attributes of the diffusion ellipsoid. J Magn Reson Imaging. 1999;9:804-813.
26
Kingsley PB. Introduction to Diffusion Tensor Imaging Mathematics. Concepts in Magnetic Resonance Part A. 2006;28A:123-154.
27
Klingberg T, Hedehus M, Temple E, Salz T, Gabrieli JD, Moseley ME, Poldrack RA. Microstructure of temporo-parietal white matter as a basis for reading ability: evidence from diffusion tensor magnetic resonance imaging. Neuron. 2000;25:493-500.
28
Deutsch GK, Dougherty RF, Bammer R, Siok WT, Gabrieli JDE, Wandell B. Children’s reading performance is correlated with white matter structure measured by diffusion tensor imaging. Cortex. 2005;41:354-363.
29
Carter JC, Lanham DC, Cutting LE, Clements-Stephens AM, Chen X, Hadzipasic M, Kaufmann WE. A dual DTI approach to analyzing white matter in children with dyslexia. Psychiatric Res Neuroimaging. 2009;172:215-219.
30
Rimrodt SL, Peterson DJ, Denckla MB, Kaufmann WE, Cutting LE. White matter microstructural differences linked to left perisylvian language network in children with dyslexia. Cortex. 2010;46:739-749.
31
Steinbrink C, Vogt K, Kastrup A, Müller H-P, Juengling FD, Kassubek J, Riecker A. The contribution of white and gray matter differences to developmental dyslexia: insights from DTI and VBM at 3.0T. Neuropsychologia. 2008;46;3170-3178.
32
Keller TA, Just MA. Altering cortical connectivity: remediation-induced changes in the white matter of poor readers. Neuron. 2009;64:624-631.
33
Koerte IK, Willems A, Muehlmann M, Moll K, Cornell S, Pixner S, Schulte-Körne G. Mathematical abilities in dyslexic children: a diffusion tensor imaging study. Brain Imag. Behav. 2016;10:781-791.
34
Frye RE, Hasan K, Xue L, Strickland D, Malmberg B, Liederman J, Papanicolaou A. Splenium microstructure is related to two dimensions of reading skill. Neuroreport. 2008;19:1627-1631.
35
Niogi SN, McCandliss BD. Left lateralized white matter microstructure accounts for individual differences in reading ability and disability. Neuropsychologia. 2006;44:2178-2188.
36
Richards T, Stevenson J, Crouch J, Johnson LC, Maravilla K, Stock P, Berninger V. Tract-based spatial statistics of diffusion tensor imaging in adults with dyslexia. Am J Neuroradiol. 2008;29:1134-1139.
37
Moreau D, Stonyer JE, McKay NS, Waldie KE. No evidence for systematic white matter correlates of dyslexia: An Activation Likelihood Estimation meta-analysis. Brain Res. 2018;1683:36-47.
38
Esen ÖS, Bozkurt M, Adıbelli ZH, Aykut E, Canverenler S. Proton MR spektroskopinin beyin tümörlerinde tanisal değeri. Tepecik Eğit Hast Derg. 2014;24:93-98.
39
Salibi N, Brown MA. Clinical MR spectroscopy first principles. Siemens Medical System Inc. 1998;6:151-64.
40
Castillo M, Kwock L, Suresh KM. Clinical aplication of proton MR spectorscopy. AJNR.1996;17:1-15.
41
Kossowski B, Chyl K, Kacprzak A, Bogorodzki P, Jednoróg K. Dyslexia and age related effects in the neurometabolites concentration in the visual and temporo-parietal cortex. Sci Rep. 2019;9:5096.
42
Rae C, Lee MA, Dixon RM, Blamire AM, Thompson CH, Styles P, Talcott J, Richardson AJ, Stein CF. Metabolic abnormalities in developmental dyslexia detected by 1H magnetic resonance spectroscopy. Lancet. 1998;351:1849-1852.
43
Richards TL, Dager SR, Corina D, Serafini S, Heide AC, Steury K, Strauss W, Hayes CE, Abbott RD, Craft S, Shaw D, Posse S, Berninger VW. Dyslexic children have abnormal brain lactate response to reading-related language tasks. AJNR Am J Neuroradiol. 1999;20:1393-1398.
44
Laycock SK, Wilkinson ID, Wallis LI, Darwent G, Wonders SH, Fawcett AJ, Griffiths PD, Nicolson RI. Cerebellar volume and cerebellar metabolic characteristics in adults with dyslexia. Ann N Y Acad Sci. 2008;1145:222-236.
45
Richardson AJ, Cox IJ, Sargentoni J, Puri BK. Abnormal cerebral phospholipid metabolism in dyslexia indicated by phosphorus-31 magnetic resonance spectroscopy. NMR Biomed. 1997;10:309-314.
46
Lebel C, MacMaster FP, Dewey D. Brain metabolite levels and language abilities in preschool children. Brain Behav. 2016;6:e00547.
47
Del Tufo SN, Frost SJ, Hoeft F, Cutting LE, Molfese PJ, Mason GF, Rothman DL, Fulbright RK, Pugh KR. Neurochemistry predicts convergence of written and spoken language: a proton magnetic resonance spectroscopy study of cross-modal language integration. Front Psychol. 2018;9:1507.
48
Bruno JL, Lu ZL, Manis FR. Phonological processing is uniquely associated with neuro-metabolic concentration. Neuroimage. 2013;67:175-181.
49
Horowitz-Kraus T, Brunst KJ, Cecil KM. Children With Dyslexia and Typical Readers: Sex-Based Choline Differences Revealed Using Proton Magnetic Resonance Spectroscopy Acquired Within Anterior Cingulate Cortex. Front Hum Neurosci. 2018;23:12:466.
50
Glover GH. Overview of Functional Magnetic Resonance Imaging. Neurosurg Clin N Am. 2011;22:133-139.
51
Shulman RG, DL Rothman. Interpreting functional imaging studies in terms of neurotransmitter cycling. Proc Natl Acad Sci.1998;95:11993-11998.
52
Pierce K. Neurodevelopmental Disorders: Spesific Learning Disorder, Communication Disorders, and Motor Disorders. In: Dulcan’s Textbook of Child and Adolescent Psychiatry. Arlington; American Psychiatric Publishing. 2016:157-165.
53
Elnakib A, Soliman A, Nitzken M, Casanova MF, Gimel’farb G, El-Baz A. Magnetic resonance imaging findings for dyslexia: a review. J Biomed Nanotechnol. 2014;10:2778-2805.
54
Seki A, Koeda T, Sugihara S, Kamba M, Hirata Y, Ogawa T, Takeshita K. A functional magnetic resonance imaging study during sentence reading in Japanese dyslexic children. Brain Dev. 2001;23:312-316.
55
Georgiewa P, Rzanny R, Gaser C, Gerhard UJ, Vieweg U, Freesmeyer D, Mentzel HJ, Kaiser WA, Blanz B. Phonological processing in dyslexic children: a study combining functional imaging and event related potentials. Neurosci Lett. 2002;318:5-8.
56
Karni A, Morocz IA, Bitan T, Shaul S, Kushnir T, Breznitz Z. An fMRI study of the differential effects of word presentation rates (reading acceleration) on dyslexic readers’ brain activity patterns. J Neurolinguistics. 2005;18:197-219.
57
Brambati SM, Termine C, Ruffino M, Danna M, Lanzi G, Stella G, Cappa SF, Perani D. Neuropsychological deficits and neural dysfunction in familial dyslexia. Brain Res. 2006;1113:174-185.
58
Hoeft F, Meyler A, Hernandez A, Juel C, Taylor-Hill H, Martindale JL, McMillion G, Kolchugina G, Black JM, Faizi A, Deutsch GK, Siak WT, Reiss AL, Whitfield-Gabrielli S, Gabrieli JDE. Functional and morphometric brain dissociation between dyslexia and reading ability. Proc Natl Acad Sci USA. 2007;104: 4234-4239.
59
Rimrodt SL, Clements-Stephens AM, Pugh KR, Courtney SM, Gaur P, Pekar JJ, Cutting LE. Functional MRI of sentence comprehension in children with dyslexia: beyond word recognition. Cereb Cortex. 2009;19:402-413.
60
Wimmer H, Schurz M, Sturm D, Richlan F, Klackl J, Kronbichler M, Ladurner G. A dual-route perspective on poor reading in a regular orthography: an fMRI study. Cortex. 2010;46:1284-1298.
61
Olulade OA, Flowers DL, Napoliello EM, Eden GF. Developmental differences for word processing in the ventral stream. Brain Lang. 2013;125:134-145.
62
Olulade OA, Flowers DL, Napoliello EM, Eden GF. Dyslexic children lack word selectivity gradients in occipito-temporal and inferior frontal cortex. Neuroimage Clin. 2015;7:742-754.
63
Saralegui I, Ontañón JM, Fernandez-Ruanova B, Garcia-Zapirain B, Basterra A, Sanz-Arigita EJ. Reading networks in children with dyslexia compared to children with ocular motility disturbances revealed by fMRI. Front Hum Neurosci. 2014;8:936.
64
Shaywitz BA, Shaywitz SE, Pugh KR, Mencl WE, Fulbright RK, Skudlarski P, Constable RT, Marchione KE, Fletcher JM, Lyon GR, Gore JC. Disruption of posterior brain systems for reading in children with developmental dyslexia. Biol Psychiatry. 2002;52:101-110.
65
Backes W, Vuurman E, Wennekes R, Spronk P, Wuisman M, van Engelshoven J, Jolles J. Atypical brain activation of reading processes in children with developmental dyslexia. J Child Neurol. 2002;17:867-871.
66
Desroches AS, Cone NE, Bolger DJ, Bitan T, Burman DD, Booth JR. Children with reading difficulties show differences in brain regions associated with orthographic processing during spoken language processing. Brain Res. 2010;1356:73-84.
67
Heim S, Grande M, Pape-Neumann J, van Ermingen M, Meffert E, Grabowska A, Huber W, Amunts K. Interaction of phonological awareness and ‘magnocellular’ processing during normal and dyslexic reading: behavioural and fMRI investigations. Dyslexia. 2010;16:258-282.
68
Steinbrink C, Groth K, Lachmann T, Riecker A. Neural correlates of temporal auditory processing in developmental dyslexia during German vowel length discrimination: an fMRI study. Brain Lang. 2012;121:1-11.
69
Peyrin C, Lallier M, Démonet JF, Pernet C, Baciu M, Le Bas JF, Valdois S. Neural dissociation of phonological and visual attention span disorders in developmental dyslexia: FMRI evidence from two case reports. Brain Lang. 2012;120:381-394.
70
Díaz B, Hintz F, Kiebel SJ, von Kriegstein K. Dysfunction of the auditory thalamus in developmental dyslexia. Proc Natl Acad Sci USA. 2012;109:13841-13846.
71
Liu L, Wang W, You W, Li Y, Awati N, Zhao X, Booth JR, Peng D. Similar alterations in brain function for phonological and semantic processing to visual characters in Chinese dyslexia. Neuropsychologia. 2012;50:2224-2232.
72
Olulade OA, Gilger JW, Talavage TM, Hynd GW, McAteer CI. Beyond phonological processing deficits in adult dyslexics: atypical FMRI activation patterns for spatial problem solving. Dev Neuropsychol. 2012;37:617-635.
73
van Ermingen-Marbach M, Pape-Neumann J, Grande M, Grabowska A, Heim S. Distinct neural signatures of cognitive subtypes of dyslexia: effects of lexicality during phonological processing. Acta Neurobiol Exp. 2013;73:404-416.
74
Hernandez N, Andersson F, Edjlali M, Hommet C, Cottier JP, Destrieux C, Bonnet-Brilhaut F. Cerebral functional asymmetry and phonological performance in dyslexic adults. Psychophysiology. 2013;50:1226-1238.
75
Kita Y, Yamamoto H, Oba K, Terasawa Y, Moriguchi Y, Uchiyama H, Seki A, Koeda T, Inagaki M. Altered brain activity for phonological manipulation in dyslexic Japanese children. Brain. 2013;136:3696-3708.
76
Kronschnabel J, Brem S, Maurer U, Brandeis D. The level of audiovisual printspeech integration deficits in dyslexia. Neuropsychologia. 2014;62:245-261.
77
Baillieux H, Vandervliet EJM, Manto M, Parizel PM, De Deyn PP, Mariën P. Developmental dyslexia and widespread activation across the cerebellar hemispheres. Brain Lang. 2009;108:122-132.
78
Ruff S, Marie N, Celsis P, Cardebat D, Démonet J-F. Neural substrates of impaired categorical perception of phonemes in adult dyslexics: an fMRI study. Brain Cogn. 2003;53:331-334.
79
Gaab N, Gabrieli JDE, Deutsch GK, Tallal P, Temple E. Neural correlates of rapid auditory processing are disrupted in children with developmental dyslexia and ameliorated with training: an fMRI study. Restor Neurol Neurosci. 2007;25:295-310.
80
Conway T, Heilman KM, Gopinath K, Peck K, Bauer R, Briggs RW, Torgesen JK, Crosson B. Neural substrates related to auditory working memory comparisons in dyslexia: an fMRI study. J Int Neuropsychol Soc. 2008;14:629-639.
81
Blau V, Reithler J, van Atteveldt N, Seitz J, Gerretsen P, Goebel R, Blomert L. Deviant processing of letters and speech sounds as proximate cause of reading failure: a functional magnetic resonance imaging study of dyslexic children. Brain. 2010;133:868-879.
82
Kast M, Bezzola L, Jäncke L, Meyer M. Multi- and unisensory decoding of words and nonwords result in differential brain responses in dyslexic and nondyslexic adults. Brain Lang. 2011;119:136-148.
83
Kovelman I, Norton ES, Christodoulou JA, Gaab N, Lieberman DA, Triantafyllou C, Wolf M, Whitfield-Gabrieli S, Gabrieli JDE. Brain basis of phonological awareness for spoken language in children and its disruption in dyslexia. Cereb Cortex. 2012;22:754-764.
84
Dole M, Meunier F, Hoen M. Functional correlates of the speech-in-noise perception impairment in dyslexia: an MRI study. Neuropsychologia. 2014;60:103-114.
85
Eden GF, VanMeter JW, Rumsey JM, Maisog JM, Woods RP, Zeffiro TA. Abnormal processing of visual motion in dyslexia revealed by functional brain imaging. Nature. 1996;382:66-69.
86
Demb JB, Boynton GM, Heeger DJ. Functional magnetic resonance imaging of early visual pathways in dyslexia. J Neurosci. 1998;18:6939-6951.
87
Olulade OA, Napoliello EM, Eden GF. Abnormal visual motion processing is not a cause of dyslexia. Neuron. 2013;79:180-190.
88
Zhang Y, Whitfield-Gabrieli S, Christodoulou JA, Gabrieli JDE. Atypical balance between occipital and fronto-parietal activation for visual shape extraction in dyslexia. PLoS One. 2013;8:e67331.
89
Diehl JJ, Frost SJ, Sherman G, Mencl WE, Kurian A, Molfese P, Landi N, Preston J, Soldan A, Fulbright RK, Rueckl JG, Seidenberg MS, Hoeft F, Pugh KR. Neural correlates of language and non-language visuospatial processing in adolescents with reading disability. Neuroimage. 2014;1;101:653-666.
90
Peyrin C, Démonet JF, N’Guyen-Morel MA, Le Bas JF, Valdois S. Superior parietal lobule dysfunction in a homogeneous group of dyslexic children with a visual attention span disorder. Brain Lang. 2011;118:128-138.
91
Reilhac C, Peyrin C, Démonet J-F, Valdois S. Role of the superior parietal lobules in letter-identity processing within strings: FMRI evidence from skilled and dyslexic readers. Neuropsychologia. 2013;51:601-612.
92
Lobier MA, Peyrin C, Pichat C, Le Bas J-F, Valdois S. Visual processing of multiple elements in the dyslexic brain: evidence for a superior parietal dysfunction. Front Hum Neurosci. 2014;8:479.
2024 ©️ Galenos Publishing House